Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            We develop and analyse the HulC, an intuitive and general method for constructing confidence sets using the convex hull of estimates constructed from subsets of the data. Unlike classical methods which are based on estimating the (limiting) distribution of an estimator, the HulC is often simpler to use and effectively bypasses this step. In comparison to the bootstrap, the HulC requires fewer regularity conditions and succeeds in many examples where the bootstrap provably fails. Unlike sub-sampling, the HulC does not require knowledge of the rate of convergence of the estimators on which it is based. The validity of the HulC requires knowledge of the (asymptotic) median bias of the estimators. We further analyse a variant of our basic method, called the Adaptive HulC, which is fully data-driven and estimates the median bias using sub-sampling. We discuss these methods in the context of several challenging inferential problems which arise in parametric, semi-parametric, and non-parametric inference. Although our focus is on validity under weak regularity conditions, we also provide some general results on the width of the HulC confidence sets, showing that in many cases the HulC confidence sets have near-optimal width.more » « less
- 
            We introduce a new notion of regularity of an estimator called median regularity. We prove that uniformly valid (honest) inference for a functional is possible if and only if there exists a median regular estimator of that functional. To our knowledge, such a notion of regularity that is necessary for uniformly valid inference is unavailable in the literature.more » « less
- 
            We discuss inference after data exploration, with a particular focus on inference after model or variable selection. We review three popular approaches to this problem: sample splitting, simultaneous inference, and conditional selective inference. We explain how each approach works and highlight its advantages and disadvantages. We also provide an illustration of these post-selection inference approaches.more » « less
- 
            We discuss inference after data exploration, with a particular focus on inference after model or variable selection. We review three popular approaches to this problem: sample splitting, simultaneous inference, and conditional selective inference. For each approach, we explain how it works, and highlight its advantages and disadvantages. We also provide an illustration of these post-selection inference approaches.more » « less
- 
            For the last two decades, high-dimensional data and methods have proliferated throughout the literature. Yet, the classical technique of linear regression has not lost its usefulness in applications. In fact, many high-dimensional estimation techniques can be seen as variable selection that leads to a smaller set of variables (a “submodel”) where classical linear regression applies. We analyze linear regression estimators resulting from model selection by proving estimation error and linear representation bounds uniformly over sets of submodels. Based on deterministic inequalities, our results provide “good” rates when applied to both independent and dependent data. These results are useful in meaningfully interpreting the linear regression estimator obtained after exploring and reducing the variables and also in justifying post-model-selection inference. All results are derived under no model assumptions and are nonasymptotic in nature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available